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Abstract

In this paper we consider the discrete multiobjective uncapacitated plant location problem. We present an exact and

an approximate approach to obtain the set of non-dominated solutions. The two approaches resort to dynamic pro-

gramming to generate in an efficient way the non-dominated solution sets. The solution methods that solve the

problems associated with the generated states are based on the decomposition of the problem on two nested sub-

problems. We define lower and upper bound sets that lead to elimination tests that have shown to have a high per-

formance. Computational experiments on a set of test problems show the good performance of the proposal.

� 2002 Published by Elsevier Science B.V.
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1. Introduction

The uncapacitated plant location problem (UPLP) is a classical discrete location problem that has been

widely studied and for which efficient techniques to obtain solutions are well known. This problem consists

of opening a set of plants among a potential set of locations to allocate a given set of customers in order to

minimize the set-up cost of opening the plants plus the cost of allocating the clients. The unfamiliar reader

is addressed to the chapter by Cornuejols et al. (1990) in the book by Mirchandani and Francis (1990) for

further references.

Although many references exist in the literature, we are not aware of any that addresses the scenario
analysis for UPLP. Scenario analysis is a solution approach that looks for robust solutions with respect to

different sets of parameters describing alternative settings likely to occur (Kouvelis and Yu, 1997). In the

case of UPLP different scenarios are given by different sets of both set-up costs and allocation costs. This

methodology is very useful in real applications to describe seasonal behavior, to gather different managerial
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strategies, to take into account varying costs, to handle uncertainty in parameter estimation, etc. Our model

can be interpreted under optic of uncertainty. In this framework uncertainty is driven by the different

location scenarios that may occur. We will assume that several decision-makers interact. Each of them has

to evaluate different scenarios. In this situation, the proposed solution has to be a compromise between the

involved decision-makers. To fulfill this requisite we propose Pareto solutions with regards to the criteria

controlled by the decision-makers.
One possible way to perform scenario analysis is to consider the problem from a multiobjective point of

view. This can be naturally done by representing each possible setting by means of one different criterion. In

this context the solution concept is the set of non-dominated or Pareto solutions with respect to the

considered criteria. These solutions have the desirable property of being acceptable for all the settings since

they cannot be improved componentwise.

Multicriteria analysis of location problems has received considerable attention within the scope of

continuous and network models in the last years. Presently, there are several problems that are accepted as

classical ones: the point-objective problem (see e.g. Wendell and Hurter, 1973; Hansen et al., 1980; Pelegr�ıın
and Fern�aandez, 1988; Carrizosa et al., 1993), the continuous multicriteria min-sum facility location

problem (Hamacher and Nickel, 1996; Puerto and Fern�aandez, 1999), and the network multicriteria median

location problem (Hamacher et al., 1998; Wendell et al., 1977), among others.

On the contrary, multicriteria analysis of discrete Location Problems has attracted less attention so far.

However, several authors have dealt with problems and applications of multicriteria decision analysis in

this field. For instance, Ross and Soland (1980) treated multiactivity–multifacility problems and proposed

an interactive solution method to compute non-dominated solutions to compare them and choose from. In

Lee et al. (1981) an application of integer goal programming to facility location with multiple competing
objectives is studied. Solanki (1991) applies an approximation scheme to generate the set of non-dominated

solutions to a bi-objective location problem. Recently, Ogryczak (1999) looks for symmetrically efficient

location patterns in a multicriteria discrete location problem. In general, none of the above papers, focuses

in the complete determination of the whole set of non-dominated solutions. The only exception is the paper

by Ross and Soland (1980) that give a theoretical characterization but do not exploit its algorithmic

possibilities.

Nowadays, multiobjective combinatorial optimization (MOCO) (see Ehrgott and Gandibleux, 2000;

Ulungu and Teghem, 1994) provides an adequate framework to tackle various types of discrete multicri-
teria problems as, for instance, UPLP. Within this emergent research area several methods are known to

handle different problems. Two of them are dynamic programming enumeration (see Villarreal and Ka-

rwan, 1981, for a methodological description and Klamroth and Wiecek, 2000, for a recent application to

knapsack problems) and implicit enumeration (Zionts and Wallenius, 1980; Zionts, 1979; Klein and

Hannan, 1982; Rasmussen, 1986; Ramesh et al., 1986). Another approach based in labeling algorithms can

be seen in Captivo et al. (2000).

It is worth noting that most of MOCO problems are NP-hard and intractable (see Ehrgott and Gan-

dibleux, 2000, for further details). Even in most of the cases where the single-objective problem is poly-
nomially solvable the multiobjective version becomes NP-hard. This is the case of spanning tree problems

and min-cost flow problems, among others. In the case of UPLP, the single-objective version is already NP-

hard (see Krarup and Pruzan, 1983). This ensures that the multiobjective formulation is not solvable in

polynomial time. In this context, when time and efficiency become a real issue, different alternatives can be

used to approximate the Pareto optimal set. One of them is the use of general-purpose MOCO heuristics

(Gandibleux et al., 2000). Another possibility is the design of ‘‘ad hoc’’ methods based on one of the

following strategies: (1) computing the supported non-dominated solutions; and (2) performing a partial

enumeration of the solutions space. Obviously, this last strategy does not guarantee the non-dominated
character of all the generated solutions since we only consider the solutions obtained during the partial

search. Nevertheless the reduction in computation time can be remarkable.
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The aim of this work is to develop two different methods to obtain the Pareto set for the multiob-

jective UPLP. The first one is an exact method that determines the whole set of efficient solutions. The

second method is an ‘‘ad hoc’’ approximate method that generates the set of supported non-dominated

solutions.

Our approach to solve the multicriteria UPLP takes advantage of the structure of the problem where

solving the problem requires addressing two nested decisions. First, finding the optimal set of plants, and
second, finding the allocation of clients within the selected set of plants. This structure is adequate for using

a dynamic programming approach where the states are associated with the plant-opening phase. The load

of this scheme relies on the enumeration of the potential sets of open plants as well as on the resolution of

the associated allocation subproblems. Therefore, the improvements on such a method are based on (1)

obtaining tight bounds that allow the elimination of states, and (2) the development of efficient techniques

to solve the allocation subproblems. We have found two different bounds that lead to three elimination tests

that have shown to have a high performance. Additionally, we present a labeling method to solve exactly

the allocation subproblem as a shortest path problem; and a scalarized approach that finds the supported
efficient set. The efficiency of the proposed methods has been tested on a battery of test problems and the

obtained results are reported.

This paper is organized as follows. In Section 2 we give the notation and the formulation of the problem.

Section 3 deals with the solution of the allocation subproblems. Section 4 presents the lower and upper

bound sets as well as the elimination tests. Section 5 describes the different components of the dynamic

programming algorithm. The results of the computational experiments are presented and analyzed in

Section 6. This paper ends with some concluding remarks.

2. Model and notation

Let M ¼ f1; . . . ;mg and N ¼ f1; . . . ; ng, respectively, denote the sets of indices for plants and for clients,

and Q ¼ f1; . . . ; qg denote the set of indices for the considered criteria. Also, for the rth criterion, r 2 Q, let
ðf ri Þi2M denote the set-up costs and ðcrijÞi2M ;j2N the allocation costs of clients to plants.

The multicriteria uncapacitated plant location problem is:

P v-min
X
i2M

f 1i yi

(
þ
X
i2M

X
j2N

c1ijxij; . . . ;
X
i2M

f qi yi þ
X
i2M

X
j2N

cqijxij

)
ð1Þ

s:t:
X
i2M

xij ¼ 1 for all j 2 N ; ð2Þ

xij6 yi for all i 2 M ; j 2 N ; ð3Þ
xij; yi 2 f0; 1g for all i 2 M ; j 2 N : ð4Þ

As it is usual, v-min stands for vector minimum of the considered objective functions. yi takes the value 1
if plant i is open and 0 otherwise. The binary variable xij is 1 if client j is assigned to plant i and 0 otherwise.

Constraints (2), together with integrality conditions on the x variables, ensure that each client is assigned to

exactly one plant, while constraints (3) guarantee that no client is assigned to a non-open plant.
Recall that in the single criterion case the integrality conditions on the x variables need not be explicitly

stated. The reason is that when the xij represent the proportion of demand of client j satisfied by plant i (i.e.

06 xij6 1), there exists an optimal solution with xij ¼ 0; 1. This property is not necessarily true when

multiple criteria are considered because, in general, there might be non-dominated solutions with non-

integer values and even non-supported non-dominated integer solutions.
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In what follows, the set of open plants associated with a given solution to P will be represented alter-

natively in one of the following ways:

• A binary vector ðyiÞi2M such that yi ¼ 1 () plant i is open.

• A set of indices I 
 M such that i 2 I () plant i is open.

Similarly, we will represent feasible allocations within a given set of plants I, alternatively in one of the

following two ways:

• A binary vector ðxijÞi2M ;j2N such that xij ¼ 1 () client j has been assigned to plant i 2 I .
• A mapping a : N ! I ; aðjÞ ¼ i() client j has been assigned to plant i 2 I .

Thus, a solution s will be represented either by a pair of binary vectors ðy; xÞ or by a pair ðI ; aÞ.
The cost of a solution s ¼ ðI ; aÞ relative to each of the considered criteria, is the sum of the fixed costs of

the open plants plus the allocation cost. It will be denoted by CrðsÞ ¼ F rðsÞ þ GrðsÞ; r 2 Q, where F rðsÞ ¼P
i2I f

r
i is the cost of opening the plants and GrðsÞ ¼

P
j2N c

r
aðjÞ;j is the cost of the allocation of clients.

Two nested decisions need to be addressed in order to solve problem P. First, the set of plants to be

opened has to be selected. Then the allocation of clients within this set of open plants has to be identified.

This allows to tackle the problem using strategies that first select a set of open plants and then solve an

allocation subproblem associated with the set of open plants. In our approach, we will exploit this structure

of the problem by using dynamic programming techniques to solve P. In particular, we propose a recur-

rence that is based on decomposing P into the plant selection subproblem (PS) and the allocation sub-
problem (A). The state variable is the set of open plants (I). At a given state, the set of decision variables are

the y�s for the PS subproblem and the x�s for the allocation subproblem. Thus, using the standard notation

in multicriteria dynamic programming, P can be also expressed as

P Hy;x ¼ v-minIfPSyðIÞ � AxðIÞg; ð5Þ
where A� C ¼ faþ c : a 2 A; c 2 Cg. PSyðIÞ is the plant selection subproblem associated with the state I,

PSyðIÞ v-min
X
i2M

f 1i yi; . . . ;
X
i2M

f qi yi

( )

yi ¼ 1; i 2 I ;
yi 2 f0; 1g; i 2 M n I : ð40 Þ

The only solution to PSyðIÞ non-dominated from below is immediate to obtain and is given by
yi ¼ 1; i 2 I ; yi ¼ 0; i 2 M n I .

Similarly, the allocation subproblem AxðIÞ can be written as

AxðIÞ v-min
X
i2I

X
j2N

c1ijxij; . . . ;
X
i2I

X
j2N

cqijxij

( )

s:t:
X
i2I
xij ¼ 1 for all j 2 N ; ð2Þ

xij 2 f0; 1g for all i 2 I ; j 2 N : ð400 Þ

Thus, in what follows we will assume that any feasible state is represented by its set of open plants.

Therefore, at a given state solutions differ one from another only in the allocation of clients to plants within
the set of open plants.

In the next section we describe solution procedures to solve the allocation subproblem.
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3. The allocation subproblem

In the previous section we have seen that obtaining the set of non-dominated solutions to the plant

selection subproblem is straightforward. Now we will deal with obtaining the set of non-dominated so-

lutions to the allocation subproblem. Besides, we will also characterize the set of supported non-dominated
solutions that we use (1) to obtain valid upper bound sets and (2) to solve approximately problem P. Recall

that supported non-dominated solutions are those that can be obtained solving scalarized linear sub-

problems. Note that the supported solutions can be obtained by performing parametric analysis of a series

of scalar UPLP. Therefore, the computational load required to obtain the set of supported non-dominated

solutions is much lower than the one required to identify the complete Pareto set. We first study the general

procedure to determine the whole Pareto set and then we will address the characterization of the supported

non-dominated solution set.

In the single objective case the exact solution of the allocation subproblem can be obtained easily. This is
a decisive difference with the case when several objectives are considered. In this case obtaining the set of

non-dominated solutions is not a simple task. It is important to recall now that, in general, for discrete

problems, this set does not coincide with the set of non-dominated supported solutions. It is easy to find

examples to show that this is also true for the allocation subproblem. Therefore we have to resort to more

sophisticated techniques for obtaining such set.

3.1. The Pareto set for the allocation subproblem

In this subsection, we give a procedure to obtain the whole set of efficient solutions of the problem AxðIÞ
for a given state I. To this end, we need a previous result. We denote any feasible allocation x by

x ¼ ðx�jÞj2N , where x�j ¼ ðxijÞi2I is a feasible allocation for client j. Moreover, we explicitly write the allo-

cation subproblem for client j that obviously is

AjxðIÞ v-min
X
i2I
c1ijxij; . . . ;

X
i2I
cqijxij

( )

s:t:
X
i2I
xij ¼ 1;

xij 2 f0; 1g for all i 2 I :

Then, we have that any efficient allocation of clients to plants must be composed by efficient allocations

for each individual client.

Proposition 1. For any state I , x� is an efficient solution for the problem AxðIÞ if for each client j 2 N , x��j
corresponds to an efficient allocation in the subproblem AjxðIÞ of client j.

Proof. Let x� be an efficient solution for AxðIÞ given by the mapping a : N ! I . Thus,

x�ij ¼
1 if i ¼ aðjÞ;
0 otherwise:

�

Assume that for client j0; x��j0 is dominated. Therefore, there must exist x#�j0 such that

X
i2I
c1ij0x

#
ij0 ; . . . ;

X
i2I
cqij0x

#
ij0

 !
6
6¼

X
i2I
c1ij0x

�
ij0 ; . . . ;

X
i2I
cqij0x

�
ij0

 !
:
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Then, the solution x0 ¼ ðx0�jÞj2N given by

x0�j ¼
x��j if j 6¼ j0;
x#�j if j ¼ j0

�
dominates x� which contradicts that x� is an efficient solution. �

The first consequence of this result is that we can obtain the set of efficient allocations for AxðIÞ by means

of the efficient allocations of each client. It is worth noting that the set of efficient allocations for a client is

straightforward to obtain. (a) Evaluate the costs of all the allocations to the open plants in I, and (b)

compare the corresponding vectors to eliminate the dominated ones. It is also straightforward that the
converse of this result does not hold in general. Let us denote by Lj, j 2 N , the lists of efficient allocations

for the clients (given by their corresponding mappings).

The second consequence of Proposition 1 is that we can calculate the set of efficient solutions for the

whole allocation subproblem by searching for the non-dominated minimal length paths in a particular

graph.

Consider the graph G ¼ ðV ;EÞ where V is the set of vertices and E is the set of edges. The set of vertices

V is given by two vertices, O and D, plus a vertex a for each a 2 Lj; 8j 2 N . The edges of this graph are

defined as follows. There are edges from O !ð0;...;0Þa 8a 2 L1. Besides, there are edges a !
ðc1
aðjÞ;j;...;c

q
aðjÞ;jÞ

a0 8a 2 Lj;

8a0 2 Ljþ1; 8j ¼ 1; . . . ; n� 1. Finally, there are also edges from a !
ðc1
aðnÞ;n;...;c

q
aðnÞ;nÞ

D; 8a 2 Ln. It is now obvious

that the non-dominated minimum length paths in G are associated with efficient solutions of AxðIÞ. Indeed,
these paths are non-dominated and their lengths are the sum of the costs of the allocations of each client in

N. Besides, each edge on a path corresponds with an efficient allocation of a client j. Thus, using the above

proposition the result follows.

3.2. The set of supported non-dominated solutions to the allocation subproblem

It is well known that the set of supported non-dominated solutions to a problem can be obtained by

solving the scalarized problem for all possible values of the scalar weights. In this subsection we obtain such

set for the allocation subproblem. First, we restrict to the case of two objectives and at the end of the

subsection we show how to extend the results to the general case.

When two criteria are considered, the k-scalarized version SAxðI ; kÞ of the allocation subproblem AxðIÞ
can be expressed as

SAxðI ; kÞ min
X
i2I

X
j2N

kc1ij
h(

þ ð1� kÞc2ij
i
xij

)
¼ min

X
i2I

X
j2N

c2ij
h(

þ kðc1ij � c2ijÞ
i
xij

)

s:t:
X
i2I
xij ¼ 1 for all j 2 N ; ð2Þ

xij 2 f0; 1g for all i 2 I ; j 2 N ð400 Þ
for 06 k6 1.

In general, for any k the corresponding scalarized allocation subproblem can be solved as the sum of

independent subproblems, i.e.

SAxðI ; kÞ ¼
X
j2N

SAjxðI ; kÞ ¼
X
j2N

min
X
i2I

c2ij
h(

þ k c1ij



� c2ij
�
xij
i)

s:t:
X
i2I
xij ¼ 1;

xij 2 f0; 1g for all i 2 I :
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Fig. 1 depicts, the lines c2ij þ kðc1ij � c2ijÞ 8i 2 I for a fixed j 2 N . Thus, the solutions of SAjxðI ; kÞ for j 2 N
fixed and k 2 ½0; 1� can be obtained by identifying the lower envelope of the set of lines fc2ij þ kðc1ij�
c2ijÞ; i 2 Ig.

Thus, for a given k the solution to SAjxðI ; kÞ is given by

xij ¼
1; i ¼ iðjÞ;
0 otherwise;

�
where iðjÞ ¼ arg min

i2I
kc1ij
n

þ ð1� kÞc2ij
o
:

Once we know the solution to SAjxðI ; �kkÞ for a fixed value �kk it is easy to obtain the interval of values of k for

which the optimal solution does not change. In particular, for a state I the optimal allocation for a given

client j 2 N and k fixed can be characterized as follows:

Proposition 2. For a fixed value of k, i� 2 I is the optimal allocation for client j 2 N ()

Max
c1ij�c

1
i�j < c

2
ij�c

2
i�j

c2ij � c2i�j
c2ij � c2i�j
� �

� c1ij � c1i�j
� � 6 k6 Min

c2ij�c
2
i�j < c

1
ij�c

1
i�j

c2ij � c2i�j
c2ij � c2i�j
� �

� c1ij � c1i�j
� � :

Proof. For a fixed value of k, i� 2 I is the optimal allocation for a given client () c2i�j þ kðc1i�j � c2i�jÞ6
c2ij þ kðc1ij � c2ijÞ 8i 2 I which is equivalent to the stated condition. �

Proposition 3. Let i1 2 I be the optimal allocation for a given client j 2 N and some k ¼ k1 P 0 fixed.
(a) If i2 2 I is the optimal allocation for client j for some k ¼ k2, k2 > k1 then c1i2 � c

2
i2
6 c1i1 � c

2
i1
.

(b) If i2 2 I is the optimal allocation for client j for some k ¼ k2, k2 < k1 then c1i2 � c
2
i2

P c1i1 � c
2
i1
.

Proof.

(a) If c1i2 � c
2
i2
> c1i1 � c

2
i1
then

c2i2 þ k2ðc1i2 � c
2
i2
Þ ¼ c2i2 þ k1ðc1i2 � c

2
i2
Þ þ ðk2 � k1Þðc1i2 � c

2
i2
Þ

P c2i1 þ k1ðc1i1 � c
2
i1
Þ þ ðk2 � k1Þðc1i2 � c

2
i2
Þ

> c2i1 þ k1ðc1i1 � c
2
i1
Þ þ ðk2 � k1Þðc1i1 � c

2
i1
Þ ¼ c2i1 þ k2ðc1i1 � c

2
i1
Þ:

(b) It is similar to (a). �

Corollary 1. Let i� 2 I be the optimal allocation for a given client j 2 N and some k� P 0 fixed. Then i� 2 I is
the optimal allocation for client j 2 N for any k 2 ½k; k� where

k ¼ Max Max
c1ij�c

2
ij > c

1
i�j�c

2
i�j

c2ij � c2i�j
c1i�j � c2i�j
� �

� c1ij � c2ij
� � ; 0

 !( )

Fig. 1. Parameterized objective function for SAjxðI ; kÞ.
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and

k ¼ Min Min
c1ij�c

2
ij < c

1
i�j�c

2
i�j

c2ij � c2i�j
c1i�j � c2i�j
� �

� c1ij � c2ij
� � ; 1

 !( )
:

The above result allows establishing for each client j 2 N , a partition of the k space in intervals where all

the elements of the same interval are associated with the same supported solution to SAjxðI ; kÞ.
By Proposition 1 the overall solution to SAxðI ; kÞ can be obtained by concatenation of the solutions to

the problems SAjxðI ; kÞ for all j 2 N . Again, this produces the partition of the k space in intervals where all

the elements of the same interval are associated with the same supported solution to the overall allocation

subproblem SAxðI ; kÞ.
In passing, we note that the above approach generates specifically the whole set of extreme Pareto so-

lutions for the allocation subproblem that results if integrality conditions on the x variables are not re-

quired. In that case the solutions of the corresponding allocation subproblems for the different clients are

the same than when the x are binary variables.
The extension of the above procedure to the case of more than two objective functions is direct. The only

change is that an alternative way to derive the partition on the k-space is required to obtain the supported

Pareto solutions of the problem. The difference is that now the partition of the k-space is not given by

intervals but it is defined by systems of inequalities. Indeed, for a parameter k ¼ ðk1; . . . ; kqÞ, i� is the

optimal allocation for client j if and only if
Pq

r¼1 krcri�j6
Pq

r¼1 krcrij 8i 2 I . Therefore, the region of the k-
space for which i� is the optimal allocation for client j is given by the set of inequalities:

Xq
r¼1

krðcri�j � crijÞ6 0 8i 2 I :

These regions can be identified using parametric linear programming (see Gal, 1984).

Alternatively, one can find directly the non-dominated supported solutions of AxðIÞ using a general

purpose algorithm. Each of the supported non-dominated solutions is associated with an extreme non-

dominated solution of the multiobjective linear problem obtained from the continuous relaxation of AxðIÞ.
The algorithm by Isermann (1977) provides the complete set of solutions of these problems and the soft-

ware package ADBASE by Steuer (1995) can be used in computer implementations to solve instances
(small to medium size).

Example. Consider the following example with 5 potential plants, 3 clients and 2 objectives. C1 and C2

represent the allocation costs for each objective and the rows of F are the opening cost for each objective:

C1 ¼
20 30 10 20 40

50 10 60 10 80

30 30 20 10 20

0
@

1
A; C2 ¼

40 20 20 10 40

10 50 20 20 30

30 10 10 30 20

0
@

1
A; f ¼ 7 3 5 8 2

2 6 1 3 4

� �
:

If I ¼ f1; 2g the supported non-dominated solutions to the allocation subproblem SAjxðI ; kÞ are the fol-

lowing:

j ¼ 1; að1Þ ¼ 2; 06 k6 2=3;
1; 2=36 k6 1;

�

j ¼ 2; að2Þ ¼ 1; 06 k6 1=2;
2; 1=26 k6 1;

�

j ¼ 3; að3Þ ¼ 2; k 2 ½0; 1�:
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Thus, the supported non-dominated solutions to the allocation subproblem are depicted in Fig. 2

To obtain all the non-dominated solutions to the allocation subproblem we consider the network of Fig.

3 and we find the non-dominated minimum length paths in the network which are

O–a2–b1–c1–D with value ð110; 40Þ.
O–a1–b1–c1–D with value ð100; 60Þ.
O–a2–b2–c1–D with value ð70; 80Þ.
O–a1–b2–c1–D with value ð60; 100Þ.

4. Lower and upper bounds

The dynamic programming approach that we propose in (5) can be enhanced using bounds that allow
the implicit enumeration of some of the states in the formulation. The bounds will be used in the usual way.

That is, a state can be fathomed if all the elements in the lower bound set are dominated by at least one

element of the upper bound set.

In this section we obtain lower bounds for the different states as well as upper bounds for the overall

problem. Two different types of lower bounds will be considered. The first one is only valid for the state

where it is generated while the second one is valid for some successors of the state where it is derived. The

two of them can be used for comparison with the set of solutions non-dominated from below of a given

state to eliminate some of its potential successors. Additionally, the second lower bound can be used for
comparison with an upper bound set of the original problem P, to eliminate the current state as well as all

its successors.

We first establish some simple relationship between different states that will be useful. Since the goal of

any enumerative scheme is to explore as few states as possible, we focus on identifying those states for

which ‘‘a priori’’ we know that any solution will be dominated from below by some solution of a different

state.

Fig. 2. Supported non-dominated solutions to the allocation subproblem.

Fig. 3. Network for finding the non-dominated solutions to the allocation subproblem.
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Let I and I 0 be two states. If I � I 0; I is called a successor of I 0 and I 0 is called a predecessor of I. When

I ¼ I 0 [ fi�g for some i� 2 M n I 0; I is called an immediate successor of I 0, and I 0 is called an immediate
predecessor of I. An immediate successor of I 0; I , is worse than I 0 if any solution of I is dominated from

below by (or has the same value than) some solution of I 0. Also, let SðIÞ denote the set of all the efficient

solutions of I, and V ðIÞ ¼ PSyðIÞ � AxðIÞ ¼ fðC1ðsÞ; . . . ;CqðsÞÞ : s 2 SðIÞg denote the set of their corre-

sponding non-dominated from below values. By definition I is worse than I 0 if and only if V ðI 0Þ is a lower
bound set of V(I).

A necessary and sufficient condition to eliminate a given state is stated in the next result.

Theorem 1. Let I be an immediate successor of I 0. I is worse than I 0 () for all N 0 
 N there exists
a : N 0 ! I 0, such that

P
j2N 0 craðjÞ;j6 f

r
i� þ

P
j2N 0 cri�;j 8r 2 Q.

Proof. ()) Suppose there exist N 0 
 N and r 2 Q such that
P

j2N 0 craðjÞ;j > f ri� þ
P

j2N 0 cri�;j 8a : N 0 ! I 0.

Let s0 ¼ ðI ; a0Þ 2 SðI 0Þ. The allocation a� : N ! I , defined by

a�ðjÞ ¼ i�; j 2 N 0;
a0ðjÞ; j 62 N 0

�

defines a feasible solution of I ; s ¼ ðI ; a�Þ that is not dominated from below by any solution of I 0.
It is easy to check that 8r 2 Q;CrðsÞ < Crðs0Þ. Indeed,

CrðsÞ ¼ F rðsÞ þ GrðsÞ ¼ F rðs0Þ þ f ri� þ
X
j2N

cra�ðjÞ;j

¼ F rðs0Þ þ f ri� þ
X
j2N 0

cri�;j þ
X
j 62N 0

cra0ðjÞ;j < F rðs0Þ þ
X
j2N 0

cra0ðjÞ;j þ
X
j 62N 0

cra0ðjÞ;j ¼ Crðs0Þ:

(() Let s ¼ ðI ; aÞ 2 SðIÞ. Consider the set N 0 ¼ fj 2 N : aðjÞ ¼ i�g. By hypothesis, there exists âa : N 0 ! I 0,
such thatX

j2N 0
crâaðjÞ;j6 f

r
i� þ

X
j2N 0

cri�;j 8r 2 Q:

The allocation a0 : N ! I 0, given by

a0ðjÞ ¼ aðjÞ; j 2 N 0;
âaðjÞ; j 62 N 0

�

defines a feasible solution s0 ¼ ðI 0; a0Þ of SðI 0Þ that dominates s from below.

Now, 8r 2 Q we can check that Crðs0Þ < CrðsÞ. Indeed,

Crðs0Þ ¼ F rðs0Þ þ Grðs0Þ ¼ F rðs0Þ þ
X
j2N 0

cra0ðjÞ;j þ
X
j 62N 0

cra0ðjÞ;j

6 F rðs0Þ þ f ri� þ
X
j2N 0

craðjÞ;j þ
X
j 62N 0

craðjÞ;j

¼ F rðsÞ þ
X
j2N

craðjÞ;j ¼ CrðsÞ: �

Remark. The characterization of Theorem 1 says that for each objective, the cost of any solution that

allocates any subset of clients to the new open plant i�, can be improved by closing plant i� and reallocating
the clients within the set of plants I 0.
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Although the above result characterizes when a state is worse than its immediate predecessor, in practice

it is very difficult to check because it requires the enumeration of all possible subsets N 0 
 N . A sufficient

condition which is easier to apply is now stated.

Proposition 4. Let I be an immediate successor of I 0 ðI ¼ I 0 [ fi�gÞ and I# a successor of I 0 such that i� 2 I#
(possibly I). If I is worse than I 0 then 8s 2 SðI#Þ, s is dominated from below by some solution of a state where
plant i� is not open.

Proof. Since I# is a successor of I 0 such that i� 2 I#, then either I# ¼ I or I# is a successor of I. If I# ¼ I the
proposition just states that I is worse than I 0. Thus, suppose I# is a successor of I, and let

s ¼ ðI#; a#Þ 2 SðIÞ#.
Define N 0 ¼ fj 2 N : a#ðjÞ ¼ i�g. Since I is worse than I 0, there exists a : N 0 ! I 0, such that 8r 2 QX

j2N 0
craðjÞ;j6 f

r
i� þ

X
j2N 0

cri�;j:

Thus, the solution s� ¼ ðI# n fi�g; a�Þ given by,

a�ðjÞ ¼ aðjÞ; j 2 N 0;
a#ðjÞ; j 62 N 0

�

is a feasible solution to the immediate predecessor of I# whose set of open plants is I# n fi�g that dominates

from below s. �

Remark. The above result states that if I is worse than I 0, then no successor of I 0 where plant i� is open can

provide solutions non-dominated from below to problem P. Therefore, such successors need not be ex-

plored (Elimination test 1).

Suppose that we know the set of solutions non-dominated from below of a given state I 0. In general, if we

want to know if one of its immediate successors is worse than I 0, we will have to: (a) solve the allocation

subproblem of the successor, (b) find its solutions non-dominated from below, and (c) compare the two

sets. We next present a lower bound of the set of solutions non-dominated from below of an immediate

successor of I 0. This lower bound set can be easily obtained and, in some cases, it will permit to establish
that an immediate successor of I 0 is worse than I 0 without having to solve the associated allocation sub-

problem.

Proposition 5. Let I be an immediate successor of I 0 ðI ¼ I 0 [ fi�gÞ. For each s ¼ ðI 0; a0Þ 2 SðI 0Þ, define

DrðsÞ ¼
X
j2N

min cra0ðjÞ;j
n

� cri�;j; 0
o
� f ri� 8r 2 Q:

The set L1ðIÞ ¼ fðC1ðsÞ � D1ðsÞ; . . . ;CqðsÞ � DqðsÞÞ : s 2 SðI 0Þg is a lower bound for I.

Proof. The proof is immediate since L1ðIÞ contains the values of the ideal allocations for each state

s 2 SðI 0Þ. �

Some elements can possibly be eliminated from L1ðIÞ. Those are the elements dominated from above by

other elements of the set. We can assume that all such elements have been eliminated.

Note that the lower bound L1ðIÞ is only valid for state I but not necessarily for any of its successors. We

now propose another lower bound that is valid not only for the state where it is generated but also for some

of its successors.
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Proposition 6. Let I be an immediate successor of a given state I 0 ðI ¼ I 0 [ fi�gÞ; ÎI 
 M n I 0 be such that
i� 2 ÎI , and SðI 0 [ ÎIÞ be the set of efficient solutions for the allocation subproblem defined over the set of plants
I 0 [ ÎI . Then the set

L2ðIÞ ¼
X
i2I 0
f 1i

 (
þ f 1

i� þ G1ðsÞ; . . . ;
X
i2I 0
f qi þ f qi� þ GqðsÞ

!
: s 2 S I 0 [ ÎI


 �)
¼ PSyðIÞ � Ax I 0 [ ÎI


 �

is a lower bound for I and for all the successors of I whose set of open plants is contained in I 0 [ ÎI .

Proof. For any solution s0 with set of open plants I# 
 ÎI [ I 0 there must exist s� 2 SðI 0 [ ÎIÞ such that

Grðs�Þ6Grðs0Þ 8r 2 Q because all the plants open in the solution s0 can be used in the solution s� as well.
On the other hand,

P
i2I 0 f

r
i þ f ri� 6

P
i2ÎI[I 0 f

r
i 8r 2 Q. Hence, by joining the two inequalities the result

follows. �

Like in the case of L1ðIÞ, we will assume that the elements of L2ðIÞ dominated from above by other

elements of the set have been eliminated.

Example (continued). Consider I 0 ¼ f3; 4g and i� ¼ f2g.
For any of the two objectives the potential savings of allocating any client to plant 2 are smaller than the

cost of opening plant 2. Thus, the characterization of Theorem 1 applies and I ¼ f3; 4; 2g is worse than I 0.
Consider, for instance, the solution s ¼ ðI ; aÞ; I ¼ f3; 4; 2g; a ¼ ð3; 4; 2Þ,
C1ðsÞ ¼ F 1ðsÞ þ G1ðsÞ ¼ 16þ 50 ¼ 66,

C2ðsÞ ¼ F 2ðsÞ þ G2ðsÞ ¼ 10þ 50 ¼ 60.

s is dominated by the solution s0 ¼ ðI 0; a0Þ; I 0 ¼ f3; 4g a0 ¼ ð3; 4; 3Þ with value

C1ðs0Þ ¼ F 1ðs0Þ þ G1ðs0Þ ¼ 13þ 40 ¼ 53,

C2ðs0Þ ¼ F 2ðs0Þ þ G2ðs0Þ ¼ 4þ 50 ¼ 54.

To obtain L1ðIÞ we first obtain SðI 0Þ ¼ fs1; s2; s3g; s1 ¼ ðI 0; a1Þ; a1 ¼ ð3; 4; 3Þ with value ð53; 54Þ;
s2 ¼ ðI 0; a2Þ; a2 ¼ ð3; 4; 4Þ with value ð43; 74Þ; s3 ¼ ðI 0; a3Þ; a3 ¼ ð4; 4; 3Þ with value ð63; 44Þ. Then,

D1ðs1Þ ¼ 0� 3 ¼ �3; D2ðs1Þ ¼ 0� 6 ¼ �6;

D1ðs2Þ ¼ 0� 3 ¼ �3; D2ðs2Þ ¼ 20� 6 ¼ 14;

D1ðs3Þ ¼ 0� 3 ¼ �3; D2ðs3Þ ¼ 0� 6 ¼ �6;

L1ðIÞ ¼ fð53; 54Þ � ð�3;�6Þ; ð43; 74Þ � ð�3; 14Þ; ð63; 44Þ � ð�3;�6Þg ¼ fð56; 60Þ; ð46; 60Þ; ð66; 50Þg:
In order to apply Proposition 6 consider ÎI ¼ f1; 2g 
 M n I 0 ¼ f1; 2; 5g.

Now I 0 [ ÎI ¼ f1; 2; 3; 4g and SðI 0 [ ÎIÞ ¼ fs1; s2; s3; s4g with s4 ¼ ðf1; 3; 4g; a4Þ; a4 ¼ ð4; 1; 3Þ and value

ð90; 30Þ.
Then L2ðIÞ ¼ fð13; 4Þ þ ð3; 6Þg � ff90; 30Þ; ð50; 40Þ; ð40; 50Þ; ð30; 70Þg is a valid lower bound for the sets

of plants f2; 3; 4g and f1; 2; 3; 4g.

Although the bound L2ðIÞ may be obtained with any subset ÎI 
 M n I 0, in practice it is convenient to

choose a generation policy for this kind of bound. The simplest one is to take ÎI ¼ fi�g. Then the bound is
exact: it coincides with the set of non-dominated solutions of the state where it is calculated. But then the

bound is only valid for the state where it is calculated. The larger the set ÎI , the larger is the number of states

for which the bound is valid. But also, the larger the set ÎI ; less accurate is the bound. Therefore, the strategy
that maximizes the number of descendants of a state for which L2 is valid consists of taking ÎI ¼ M n I 0.
However, this leads to no change in AxðI 0 [ ÎIÞ relative to node I 0 and only the opening costs could make the
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lower bound set improve. If we want to increase the possibility of improving the lower bound of state

I 0; M n I 0 has to be reduced in at least one element. In that case, the obtained bound will be different from that

of I 0 when some plant that is closed in I 0 is used in some non-dominated from below solution of AxðI 0 [ ÎIÞ.

Corollary 2. Let L(I) be the set that results from eliminating from L1ðIÞ [ L2ðIÞ all the elements dominated
from above by other elements of the set. L(I) is a lower bound for state I.

Corollary 3. Let I be an immediate successor of a given state I 0. If 8s 2 L1ðIÞ; 9s0 2 SðI 0Þ that dominates s
from below, then I is worse than I 0 (Elimination test 2).

Corollary 4. Let U be an upper bound set of the original problem P. If 8s0 2 L2ðI 0Þ; 9s 2 U that dominates s0

from below, then I 0 (and all the successors for which L2ðI 0Þ is valid) can be eliminated (Elimination test 3).

We finish this section devoted to bounds describing a set of upper bounds for problem P. The first obvious
upper bound for the problem is given by the non-dominated solutions of the allocation subproblem when the

whole set of plants is considered open. Notice that this set of efficient solutions can be computed easily just

evaluating the different allocations and eliminating those that are dominated. A more refined bound can be

obtained by solving scalarized plant location problems with different scalar factors. These problems can be

solved either exactly or approximately when the size makes the exact resolution not possible. The use of

approximated solutions gives larger upper bounds but still valid for our elimination purposes. In any case,

the set of upper bounds is enlarged dynamically at each state where efficient solutions are obtained. In our

approach we have used the Erlenkotter heuristic (Erlenkotter, 1978) for solving the scalarized problems.
First, the scalarizing factor is set to 0 and then it is sequentially increased by steps of 0.1.

5. Enumerative scheme

Two different strategies have been used in order to solve problem P. With the first strategy the problem is

solved exactly and, hence, the whole set of Pareto solutions is obtained. As will be seen in the computa-

tional results section this strategy is costly. For this reason the second strategy only looks for the set of
supported Pareto solutions. Thus it might be considered as an approximation to the actual solution set.

Both strategies are based on the same enumerative scheme and state generation mechanism. In this section

we describe both strategies as well as the policy used to carry out the search in the state space.

5.1. Solution strategies

Given that the search is based on enumerating the different sets of plants, and that the set of open plants

is fixed at each state, the difference between solving a problem exactly or approximately reduces to the
solution of the allocation subproblems. In order to solve the problem exactly, a labeling algorithm is used

to solve the shortest path approach described in Section 3.1. When problem is solved approximately, the set

of supported Pareto solutions of the allocation subproblem is obtained solving one scalarized problem for

each set in the partition of the k-space as described in Section 3.2.

5.2. State exploration

The search is performed by stages and each stage contains a collection of states. The states at stage k,
correspond with all possible combinations of open plants with exactly k open plants. Thus, a state I at stage
k has exactly k immediate predecessors at stage k � 1. These are associated with all the subsets of I with
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cardinality k � 1. The (unique) state of stage k � 1 from which I is generated is called the generator of I (see
Fig. 4). Similarly, state I at stage k is an immediate predecessor of exactly m� kðm ¼ jM jÞ states at stage
k þ 1. They are the states whose set of open plants is I [ fig for some i 2 M n I . Yet, I is the generator of

only some of its immediate successors that will be called descendants of I.
The search consists basically of two types of activities that inter-relate one with the other. One type of

action consists in exploring the different states while the other type of action consists in generating the

successors of a given state. This second activity is the final step of the state exploration action. The search

explores all the states of a stage before exploring any state of any subsequent stage.

Let U denote an upper bound set for P and let I 0 at stage k � 1 denote the generator of state I at stage k.
When state I is selected to be explored we proceed as follows:

1. Apply Elimination test 2: If LðI 0Þ fulfills the conditions of Corollary 3, then eliminate I.
2. Apply Elimination test 3: If L2ðI 0Þ fulfills the conditions of Corollary 4, then eliminate I 0.
3. If I 0 has not been eliminated, solve the allocation subproblem associated with I to find the set of non-

dominated solutions from below SðIÞ and to obtain V ðIÞ.
4. Apply Elimination test 1 (Proposition 4): If I is worse than I 0 then eliminate I.
5. Otherwise, generate the descendants of I.

5.3. State generation mechanism

Without loss of generality we suppose that the indices of plants have been relabeled so that the new

indices correspond to the preference order for opening the plants.

For notational convenience, we assume that the indices of open plants at state I of stage k, are ordered
by increasing values. That is, I ¼ fp1; p2; . . . ; pk�1; pkg where p1 < p2 < � � � < pk�1 < pk. The states for which
state I 0 at stage k � 1 is the generator are the immediate successors of I 0 whose additional open plant has an

index greater than pk�1. In this way, although state I at stage k with I ¼ fp1; p2; . . . ; pk�1; pkg has k im-
mediate predecessors, I is always generated from its generator, namely, state I 01 of stage k � 1 with

I 01 ¼ fp1; p2; . . . ; pk�1g. However, I also has as immediate predecessors the states of stage k � 1 with the

following sets of open plants: I 02 ¼ fp1; p3; p4; . . . ; pkg, I 03 ¼ fp1; p2; p4; . . . ; pkg; I 04 ¼ fp1; p2; p3; p5; . . . ;
pkg; . . . ; I 0k�1 ¼ fp1; p2; . . . ; pk�2; pkg and I 0k ¼ fp2; p3; . . . ; pkg. In what follows, the immediate predeces-

Fig. 4. State generation strategy.
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sors of I will be denoted by fI 0rgr¼1;...;k. Without loss of generality we will assume that the generator of I
is I 01.

The descendants of state I 0 ¼ fp1; p2; . . . ; pk�1; pkg at stage k with are its m� pk immediate successors

Ir ¼ fp1; p2; . . . ; pk�1; pk; prkþ1g, where prkþ1 > pk; r ¼ 1; . . . ;m� pk:
Let I 0 ¼ fp1; p2; . . . ; pk�1; pkg denote a state at stage k whose descendants we want to generate and let

I ¼ fp1; p2; . . . ; pk�1; pk; pkþ1g; pkþ1 > pk denote one of its possible descendants. I is generated only if the
following conditions hold:

1. None of the immediate predecessors of I ; I 0r, has been eliminated (Elimination test 1 or Elimination test

3). If I 0r was eliminated because it was worse than some predecessor we can apply Elimination test 1. If I 0r

was eliminated by Elimination test 3, Corollary 4 also applies to I since it is a successor of I 0r.
2. Elimination test 2 does not apply to I for any of its immediate predecessors. That is, Corollary 3 does not

apply with I and I 0 ¼ I 0r, for r ¼ 1; . . . ; k þ 1:

5.4. Plant selection criterion

Progressing from a stage to the following one, requires the opening of a new plant. The efficiency of the

proposed scheme relies on the criterion used to select the new open plant. We have used a selection criterion

that is established beforehand and is fixed during all the exploration.

When calculating the upper bound set, the set of supported non-dominated solutions to problem P has

been obtained. Then the frequency of each open plant within this set of solutions is recorded. The criterion

to select the new open plant is by decreasing ordering of these frequencies. Let fo1; o2; . . . ; omg denote the

indices of plants ordered according to these decreasing frequencies.
Recall that in order to obtain the lower bound L2ðIÞ, an allocation subproblem has to be solved. To

reduce the number of such subproblems to be solved, it is desirable that L2ðIÞ be valid for as many de-

scendants as possible. On the other hand, we know that L2ðIÞ is only valid for those descendants where

certain plants are not open (see Section 4 for details on the computation of these bounds). For selecting the

set ÎI to obtain the lower bound L2ðIÞ, the criterion that chooses plants increasingly from fo1; o2; . . . ; omg,
permits one to know in advance which plants will always be closed in the descendants of a given state.

Therefore, it favors applying efficiently Elimination test 3. In particular, if i�ðIÞ ¼ maxfs jos 2 Ig denotes

the index of the only plant open in state I that was not open in its generator, then clðIÞ ¼ fos j s > i�ðIÞg
represents the set of plant indices that are currently closed but could be open in the descendants of I. Thus,
taking ÎI ¼ i�ðIÞ [ clðIÞ all the descendants of the current state will have a set of open plants contained in

I [ ÎI and the generated bound is L2ðIÞ ¼ PSyðIÞ � AxðI [ ÎIÞ.
In practice, we even simplify the computation of these bounds reducing the number of allocation sub-

problems that need to be solved. Thus, instead of calculating L2ðIÞ as explained, we use the bound set

PSyðIÞ � ½
T
s:os2clðIÞ AxðI

sÞ� where Is ¼ M n fosg for each s so that os 2 clðIÞ. Note that on the whole there are

m possible sets I s; s ¼ 1; . . . ;m, that take part in all possible intersections. Therefore, for s ¼ 1; . . . ;
m; L2ðIsÞ is calculated at the beginning of the process and then is used when needed during the exploration
phase.

In passing, we note that PSyðIÞ � ½
T
s:os2clðIÞ AxðI

sÞ� � L2ðIÞ: Therefore, the lower bound set PSyðIÞ �
½
T
s:os2clðIÞ AxðI

sÞ� is valid for the state I although it is larger than the original L2ðIÞ.

6. Computational experience

A series of computational experiments have been performed in order to evaluate the behavior of the
proposed solution method. As has been shown in the previous sections, from the methodological point

of view there is no difference dealing with two or more criteria. However, it is well-known that the
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computational load to solve n objective problems increases exponentially with n (Ehrgott and Gandibleux,

2000). For this reason in this section we have restricted to bicriteria problems.

Programs have been coded in FORTRAN-90 and executed in a PC with an Intel II processor at 233

MHz and 64 MB of RAM. Since this problem has not been previously addressed no available benchmark

instances exist. Thus, our data generation strategy consists of combining pairs of single criterion UPLP. In

the well-known Beasley�s Library (htttp://mscmga.ms.ic.ac.uk/info.html) UPLP instances of the same size
differ one from the other only in the opening costs and have the same allocation costs. In our context we

consider that it is more convenient that both the opening and the allocation costs differ in the considered

pairs of instances. For this reason we have used a different set of data which is also available in http://www-

eio.upc.es/�elena/sscplp/index.html and has been used previously in the literature (see e.g., Delmaire et al.,

1999; Hindi and Pienkosz, 1999).

Problems are divided into four groups of dimensions 10� 20; 15� 30; 20� 40 and 20� 50 (plants �
clients). Each of these groups contains 15, 45, 28 and 28 problems, respectively. In fact, we have considered

two different sets of problems, each of them composed of the mentioned groups and number of instances. A
first battery that corresponds exactly to the referenced original data and a second battery where the opening

costs of the first battery have been modified. In the original data, the opening costs are large as compared to

the allocation costs (see Delmaire et al., 1999, for a description of the problem generator): the opening costs

range in ½1000; 2000� while the allocation costs range in ½0; 100�. In the second battery, the opening costs

have been divided by 10 (and thus range in ½100; 200�) while the allocation costs remain unchanged. In this

section instances of the first battery will be referred to as ‘‘large-cost’’ and instances of the second battery

will be referred to as ‘‘small-cost’’.

For each instance we have solved the problem twice: exactly and approximately. As has been mentioned,
the approximate method gives the whole set of extreme solutions to the model that results when the x
variables are allowed to take continuous values. Thus, our results also permit to compare the difficulty of

the exact solution of the two models with our dynamic programming approach.

Tables 1 and 2 contain a summary of the results obtained for the two sets of problems. Columns undom.
give the average number of non-dominated solutions of the problems; states give the average number of

states generated in the exploration process; stages are the average of the maximum stage reached (deepest

search level); test2, test3 and test1 show the average number of states eliminated by test 2, test 3 and test 1,

respectively; finally, solved are the average number of states where the allocation problem had to be solved.
In general terms, the small-cost instances were harder to solve than the large-cost instances. Roughly

speaking this is due to the fact that the contribution of the set-up costs to the overall cost of solutions is

considerably smaller for small-cost than for large-cost instances. Thus, the accuracy of the lower bound sets

is better for large-cost instances. The reason is that set-up cost of solutions are always evaluated exactly.

Table 1

Summary of computational experiments for small-cost instances

Small cost Undom. States Stages Test2 Test3 Test1 Solved

10� 20 Exact 15.400 55.533 3.733 1.867 8.733 109.067 164.600

Approx. 10.333 57.067 3.733 0.000 6.333 115.200 172.267

15� 30 Exact 17.867 131.178 4.000 0.089 24.800 434.178 565.356

Approx. 11.244 189.422 4.000 71.844 24.578 423.178 612.600

20� 40 Exact 30.214 298.357 4.536 0.000 80.250 1251.786 1550.143

Approx. 15.321 211.250 3.893 0.000 14.929 1128.321 1339.571

20� 50 Exact 38.160 514.280 4.880 0.680 115.080 1249.760 1764.040

Approx. 13.160 203.400 3.480 0.000 11.040 1085.920 1289.320
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It is only the part corresponding to the allocation costs which is approximated. Since the efficiency of the
procedure relies on the performance of the tests which, in turn, depend on the accuracy of the lower bound

sets, this explains the obtained results.

For equal size problems, the number of non-dominated solutions is much smaller for small-cost in-

stances than for large-cost instances. Again, this can be explained by the fact that set-up costs have been

divided by 10. Thus, the range of values for solutions is much smaller in the former case. As was expected,

in the two cases the number of supported Pareto solutions (Approx.) is considerably smaller than the

number of Pareto solutions (Exact). While in the case of small-cost instances the ratio between these two

numbers increases moderately with size, for large-cost instances it increases notably with size. This rela-
tionship can be further appreciated in Fig. 5 where additionally these values are compared with the size of

the initial upper bound set.

On the contrary, the average number of states and stages is larger for small-cost instances than for large-

cost instances. These results are related with the efficiency of the elimination tests that, as will be seen, is

higher for large-cost instances than for small-cost instances. Tables 3 and 4 show the distribution of the

number of non-dominated solutions in the different stages of the search.

In general, the average number of stages reached does not differ significantly in the exact and the ap-

proximate executions neither for the small-cost nor for the large-cost instances. In all the cases that number
seems to increase almost linearly with the number of plants. However, the difference in the average number

of generated states between the exact and the approximate executions becomes important as size increases

for small-cost instances whereas it remains moderate for the large-cost instances. For the two types of costs,

with the exact executions the number of states seems to increase exponentially with the size of the problem.

Yet, for the approximate executions there are important differences on the number of generated states

Table 2

Summary of computational experiments for large-cost instances

Large cost Undom. States Stages Test2 Test3 Test1 Solved

10� 20 Exact 18.467 32.400 3.533 55.067 19.800 18.067 50.467

Approx. 10.133 31.800 3.533 55.200 18.533 18.533 50.333

15� 30 Exact 63.311 80.800 3.933 134.889 123.778 80.089 160.889

Approx. 20.444 77.467 3.889 136.400 106.489 82.622 160.089

20� 40 Exact 110.643 119.000 3.929 366.143 250.821 111.929 230.929

Approx. 31.643 105.643 3.929 350.571 208.893 117.571 223.214

20� 50 Exact 211.000 453.200 4.880 357.840 1330.240 383.080 836.280

Approx. 51.760 282.720 4.800 326.280 693.760 437.800 720.520

Fig. 5. Number of non-dominated solutions.
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between small-cost and large-cost instances for equal size problems. Fig. 6 depicts a graphic with the av-
erage number of states for each of the two executions.

The efficiency of the different elimination tests can be seen in Fig. 7(a) and (b) where the proportion of

the effectiveness is calculated over the average number of generated states. At the stages where they are

applied, the elimination tests test2 and test3 use the exact value of the set-up costs at the stages and a lower

bound set on the corresponding allocation subproblems. When the set-up costs are large compared to the

allocation costs, the contribution of the lower bound set is not crucial to the overall lower bound set and,

thus, the tests are applied very efficiently. However, when the contribution of the set-up costs decreases, as

is the case with the small-cost instances, the role of the lower bound on the allocation subproblems in-
creases and the efficiency of the tests reduces considerably. This occurs specially in the case of test2 that is

Table 3

Distribution of the number of non-dominated solutions for small-cost instances

Small cost 0 1 2 3 4 5 6 7 8 9

10� 20 Exact 6.80 0.00 3.60 5.00 0.00

Approx. 6.87 0.00 2.07 1.40 0.00

15� 30 Exact 8.36 0.00 1.44 8.20 0.72 0.46 0.00 0.00

Approx. 8.42 0.00 1.49 1.33 0.00 0.00 0.00 0.00

20� 40 Exact 9.89 0.00 7.89 10.69 1.91 3.55 0.00 0.00 0.00

Approx. 9.93 0.00 4.11 1.29 0.00 0.00

20� 50 Exact 9.56 0.00 9.44 14.48 5.44 3.00 1.50 0.00 0.00 0.00

Approx. 9.72 0.00 2.40 1.04 0.00

Table 4

Distribution of the number of non-dominated solutions for large-cost instances

Large cost 0 1 2 3 4 5 6 7

10� 20 Exact 2.27 1.73 14.47 0.00 0.00

Approx. 1.93 1.73 6.47 0.00 0.00

15� 30 Exact 3.18 0.96 56.60 2.90 0.00 0.00 0.00

Approx. 3.38 0.96 15.53 0.63 0.00 0.00

20� 40 Exact 2.68 1.71 98.29 8.42 1.11 0.00 0.00

Approx. 2.86 1.71 24.71 2.24 0.50 0.00 0.00

20� 50 Exact 3.20 0.92 179.72 1.86 0.00 0.00 0.00

Approx. 3.40 1.00 40.76 5.96 0.67 0.00 0.00 0.00

Fig. 6. Average number of generated states.
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hardly ever applied with small-cost instances of all sizes but whose efficiency is higher to test 1 for large-cost

instances.

Finally, Fig. 8 shows the increase of times of the exact and approximate method. As was expected the

exact resolution of the allocation subproblems results in a considerable increase on the overall execution

time. In spite of the difficulty of the problem the execution times are reasonably small although the space

requirements to store the search tree information are enormous (almost 0.5 GB for 20� 50 problems).

7. Concluding remarks

Several heuristics can be developed to prune the exploration in depth of the search tree. It is straight-

forward to see that if we do not perform the whole exploration of the tree some of the solutions ob-

tained might be actually dominated. Nevertheless, the computational experiments performed have shown

that, even in moderately large problems, six levels of depth in the search are enough to find the whole

Fig. 7. Performance of elimination tests for: (a) exact executions, (b) approximate executions.

Fig. 8. Required CPU times in seconds.
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Pareto-optimal solution set (see Tables 3 and 4). Therefore, such a heuristic with a maximum depth level

fixed to five or six would be almost exact and even with four levels the error committed would be less than

9% over the actual number of non-dominated solutions. Obviously, the loss of accuracy in this approach

would be compensated with important reductions in CPU time and space requirements.

The second remark is on the application of this methodology to the general case of q > 2 criteria. In the

paper we have presented the general approach to q criteria. The are only two differences between the bi-
criteria and the general q-criteria cases: (1) one must solve q-criteria shortest path problems; and (2) one

must obtain the supported non-dominated solutions using general purpose algorithms for multiobjective

linear programming. Although these two questions are solved from the theoretical point of view (see

Isermann, 1977; Gal, 1984; and Azevedo and Martins, 1991; Steuer, 1995) they introduce computational

difficulties in the problem, due to the exponential behavior of the exact algorithms available to solve them.
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